SHORT COMMUNICATIONS

Unusual Thermolysis of Diisobutyl Polysulfides

N. A. Korchevina, E. N. Sukhomazova, and E. N. Deryagina

Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: admin@irioch.irk.ru

Received October 4, 2002

Gas-phase thermolysis of dialkyl polysulfides usually gives thiophene as the major product [1]. In the thermolysis of dibutyl polysulfides, a small amount (6%) of 5-methyl-1,2-dithiole-3-thione is also formed. We have found that the major product of thermolysis of a mixture of diisobutyl polysulfides $(i\text{-}C_4\text{H}_9)_2\text{S}_n$ (n=3-4) or each particular polysulfide at 350–400°C is 4-methyl-1,2-dithiole-3-thione (I). Its yield reaches 72% from diisobutyl trisulfide at 400°C. Also, 2-methylpropane-1-thiol (10–20%), diisobutyl sulfide (2–6%), and diisobutyl disulfide (2–17%) are obtained.

$$(CH_3CHCH_2)_2S_n$$
 CH_3 S $+$ i - C_4H_8 $+$ $2H_2$ I

The scheme of formation of dithiolethione I implies intramolecular dehydrogenation of the alkyl

chain in polysulfides in the heterocyclization process which is thermodynamically favorable due to formation of pseudoaromatic system.

Thus, thermolysis of dissobutyl polysulfides is a convenient preparative method for the synthesis of 4-methyl-1,2-dithiole-3-thione (I).

Polysulfides were supplied in a stream of nitrogen into a quartz flow tubular reactor $(0.65 \times 0.03 \text{ m})$ which was heated in an electric furnace. Compound **I** was isolated by vacuum distillation of the liquid condensate. bp 144–146°C (3 mm), dark red liquid. ¹H NMR spectrum, δ , ppm: 2.21 d (CH₃), 8.10 d (CH, J = 1 Hz) (cf. [2]).

REFERENCES

- 1. Sukhomazova, E.N., Turchaninova, L.P., Korchevin, N.A., Deryagina, E.N., and Voronkov, M.G., *Zh. Org. Khim.*, 1990, vol. 26, p. 1225.
- 2. Brown, R.F.C., Rae, I.D., and Sternhell, S., *Aust. J. Chem.*, 1965, vol. 18, p. 1211.